Weighted L1-norm Logistic Regression for Gene Selection of Microarray Gene Expression Classification
نویسندگان
چکیده
منابع مشابه
Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملGene Selection for Tumor Classification Using Microarray Gene Expression Data
In this paper we perform a t-test for significant gene expression analysis in different dimensions based on molecular profiles from microarray data, and compare several computational intelligent techniques for classification accuracy on Leukemia, Lymphoma and Prostate cancer datasets of broad institute and Colon cancer dataset from Princeton gene expression project. This paper also describes re...
متن کاملfeature selection and classification of microarray gene expression data of ovarian carcinoma patients using weighted voting support vector machine
we can reach by dna microarray gene expression to such wealth of information with thousands of variables (genes). analysis of this information can show genetic reasons of disease and tumor differences. in this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملWeighted isotonic regression under the L1 norm
Isotonic regression, the problem of finding values that best fit given observations and conform to specific ordering constraints, has found many applications in biomedical research and other fields. When the constraints form a partial ordering, solving the problem under the L1 error measure takes O(n) when there are n observations. The analysis of large-scale microarray data, which is one of th...
متن کاملFeature Selection for Cancer Classification Using Microarray Gene Expression Data
The DNA microarray technology enables us to measure the expression levels of thousands of genes simultaneously, providing great chance for cancer diagnosis and prognosis. The number of genes often exceeds tens of thousands, whereas the number of subjects available is often no more than a hundred. Therefore, it is necessary and important to perform gene selection for classification purpose. A go...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal on Advanced Science, Engineering and Information Technology
سال: 2020
ISSN: 2460-6952,2088-5334
DOI: 10.18517/ijaseit.10.4.10907